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MICRO-MECHANICAL AND ELECRICAL PROPERTIES OF

MONOLITHIC ALUMINUM NITRIDE AT HIGH TEMPERATURES
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SUMMARY

Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background intemal

friction at less than I x 10 -4 logarithmic decrement (log dec.) from 20 to 1200 °C. Two mechanical loss peaks were

observed, the first at 350 °C approximating a single Debye peak with a peak height of 60x 10-4 log dec. The second

peak was seen at 950 °C with a peak height of 20x10-4 log dec. and extended from 200 to over 1200 °C. These
micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical

conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally
activated processes, with activation energies of 0.78 and 1.32 eV respectively.

INTRODUCTION

Aluminum nitride has been shown to have great potential as a high temperature electronic packaging

material (refs. 1 to 3). However in extreme environment applications, low amplitude (<10 4 strain) vibrations can be

a source of mechanical fatigue and failure. In addition, elevated temperatures encountered during device fabrication

and during subsequent operation demand knowledge of the material's temperature dependent mechanical and

electrical response. To obtain this information, resonance frequency and internal friction measurements were
performed on aluminum nitride as a function of temperature. The temperature and frequency dependent dielectric

properties were also measured and compared with the micro-mechanical measurements to elucidate a probable
mechanism for the observed behavior.

EXPERIMENTAL

Samples of a commercially available aluminum nitride (density 3.27 g/cm3), with small additions of Y203

(-1 wt.%) as a consolidation aid, were sectioned into specimens with dimensions 114x9x3 mm. Temperature

dependent elastic and anelastic properties were determined by estabfishing continuous flexural vibrations in the
specimen at its lowest resonance frequency and allowing the vibrations to freely decay after the mechanical

excitation was removed. The details of the apparatus are given elsewhere (4). At a constant frequency (f) the unit

for anelastic behavior is the logarithmic decrement I//and it is calculated as,

(1)

where amplitudes a I and a 2 are measured at times tl and t2, respectively ( 11 ). The geometry and material dependent

resonance frequency can be calculated from,

1

(2)
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whereBisacombinationofgeometricandnumericconstants,l is the sample length, and E and p are the material's

elastic modulus and density, respectively. From equation (2), a ratio of the resonance frequencies, at a given

temperature with respect to the 25 °C value, gives a measure of the temperature dependent elastic response. To
obtain the electrical measurements, specimens of aluminum nitride were plated with platinum electrodes. The electric

permittivity as a function of temperature and frequency was measured in air using a Solatron 1260 impedance

analyzer as previously reported (5). Micrographs of etched and polished samples were recording using scanning

electron microscopy. Energy dispersion spectroscopy EDS was used to identify the various major phases of this
material.

RESULTS AND DISCUSSION

A typical SEM micrograph is seen in figure 1, where three types of features with various amounts of

yttrium, alumina, and carbon are clearly revealed. The observed carbon may be only an artifact from the microscope

probe analysis. Micrographs of a cut and polished surface reveal grains free of excessive boundary phases. X-ray
diffraction also indicates a highly crystalline material. Yttrium-containing compounds appear at grain boundary triple

points. In addition, EDS reveals the presence of alumina among the AIN grains.

The mechanical spectrum in figure 2 illustrates the anelastic and elastic responses of this material up to

1200 °C, at a fundamental vibration of 1464 Hz. This mechanical loss spectrum contains two peaks. The salient

features of the first peak include its location at 350 °C, with a peak height of 60x 10 -4 log dec. The peak commences

at about 200 °C and terminates at approximately 500 °C. This energy loss peak closely approximates a Debye peak
with a narrow distribution of thermally activated relaxation times. The second mechanical energy loss peak was

observed at 950 °C, and is designated the high temperature peak. The high temperature peak is a low amplitude,

broad peak starting at approximately 200 °C and extending beyond 1200 °C. In addition, the mechanical loss

spectrum was also obtained at the first overtone to the fundamental frequency, which for this material, vibration

mode and geometry was 4087 Hz. This spectrum exhibits the same features as the fundamental tone with the

exception of the first overtone peak, which is spectrum-shifted to the right with respect to the temperature. This
thermal and mechanical coupling indicates a thermally activated mechanism as the source of the elastic and anelastic

dispersion. Noticeably absent is the exponential increase in background internal friction characteristic of the grain

boundary sliding observed in silicon nitride (6). In addition, figure 2 also illustrates a decrease or relaxation in the

elastic modulus, which occurs at the same temperature as the anelastic relaxation absorption peak at 350 °C. The

typical elastic response as a function of temperature is shown in the upper curve in figure 2. This figure illustrates

that the relative stiffness of the material decreases 8 percent from 25 to 1200 °C, which is not unusual for monolithic

ceramic materials (4). In addition features of the elastic response, illustrated in figure 2, also shifts to higher

temperatures when the sample is mechanical excited at its first overtone. This behavior is indicative of thermally
activated mechanism. Because such a low level of internal friction exist around the peaks and the corresponding

temperature dependent elasticity remains relatively constant, no evidence of grain boundary sliding induced micro-

creep is evident, under the conditions of the micro-strains imposed on the aluminum nitride samples in this

investigation.
Given the reported piezoelectric nature of bulk and thin film A1N (7), temperature dependent dielectric

measurements were performed to determine if these micromechanical observations manifested themselves in the

electrical properties of this material. The complex electric modulus (M) formalism was used to characterize the

material's temperature dependent dielectric properties (refs. 8 and 9). The complex electric modulus is the reciprocal

of the complex permittivity e. The relationship between the permittivity and the electric modulus is given in

equation (3)

M =--1 _:Real + j Elmaginary (3)
£ 2 + 2 2 2

E Real Elmaginary _ Real + Elmaginary
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Thecomplexelectricmodulusplotgivesasinglearc,whichisrepresentativeofthebulkpropertiesofthe
material(fig.3).Fromthisdata,themagnitudeoftheimposedalternatingelectricfieldandsampledimensions,the
directcurrentresistivitywasdeterminedtobe108D./meters. Therefore this AIN sample, with predominately covalent

bonding, behaves like an insulator and hence contains minimal concentrations of those agents, which could function

as extrinsic charge carrying dopants.

Results shown in figure 4 illustrate a dispersion of the real part of the electric modulus. The midpoints of

these dispersion curves occur at 10, 20, 30, and 70 kHz for these temperatures 466, 490, 515, and 550 °C

respectively. The peaks in figures 5(a) and 5tb) appear thermally activated and are located near the temperature of

the mechanical internal friction peak found at 400 °C and 4087 Hz. Each peak extends over three decades of

frequency, indicating a wide range of relaxation times due to the non-degenerate reorientation of elastic strain energy

states of the relaxing entities. At higher temperatures (560 to 734°C), the complex component of the electric modulus

becomes narrower and higher as compared to the lower temperature results (figs. 5ta) and 5(b)). In addition it is at

these temperatures that the two mechanical loss peaks overlap in figure 2. The smaller peak at 560 °C in figure 5(b)

appears to be a continuation of the low temperature peaks seen in figure 5(a). The higher and narrower absorption

curves in figure 5(b), suggest a different source of origin, possibly one that is related to the high temperature loss
peak in figure 2.

Both the mechanical and electrical energy absorption peaks can be treated as thermally activated Arrhenius

processes to obtain their respective activation energies. The energy equation is classically expressed as

f(T) e' '-'= f -q'; (4)

weref(T) is the temperature dependent resonance frequency, fo is the characteristic frequency of the relaxation
phenomenon, k and T are the Boltzmann constant and absolute temperature, respectively, and Q represents the

activation energy. A plot of the peak frequency as a function of reciprocal temperature is given in figure 6. From the

slope of these lines the activation energy was found to be 0.78 eV for the T= 350 °C mechanical anelastic peak.

Activation energies derived from the electric modulus were 1.32 and 1.18 eV for the low temperature and high
temperature peaks, respectively. Nakayama et al. (10) have observed the loss tangent as a function of grain size, and

attributed the energy absorption peak to the piezoelectric effect in A1N crystal grains at 830 MHz and 30 °C. Hence
in this study the magnitude of the thermal activation energies, temperatures, frequencies and height of the mechanical

absorption peak indicate that the piezoelectric effect is not the source of the observed mechanical or electrical

dispersion in the loss factors. The results of this investigation are more indicative of point defects or a cluster of
point defects as the likely cause of the electrical and mechanical relaxation (refs. 10 and 11).

Slack et al. (12) have identified oxygen as a major impurity in aluminum nitride. One possible source of

oxygen clearly would be the consolidation additives, examples of which are A1203 and Y203 as seen in figure 1.
Equation (5) is the proposed mechanism for the incorporation of M.,O3, where M is a metal in the (+3) state, into
A1N expressed in Kroger-Vink notation. In this scenario lattice misfit strain occurs due to the smaller ionic radii of

the incorporated oxygen, as compared with the nitrogen ion of the host crystal. In addition, to compensate for the
difference in valance, charged (+2) vacancies on the aluminum sites are created.

A/N
M203 _ 2M A1 +30 N + V_l (5)

The resultant physical entity, which is described by equation (5), is a charged defect cluster within the A1N

crystal lattice. This defect or electro-elastic dipole would respond to both external mechanical and electrical

alternating fields. The probable cause for the different magnitudes between the mechanical and electrical activation

energies at the lower temperatures may be due to the difference in the elastic strain energy barrier to reorientation.

The externally applied alternating mechanical stress field may provide sufficient elastic strain energy to reduce the
reorientation barrier and hence lower the activation energy needed for the defect's reorientation. A similar effect may

be functioning at the higher temperature electric relaxation. At higher temperatures a more isotropic stress state may

exist due to thermal expansion of the crystal lattice and thereby lowering the activation energy for defect
reorientation.
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CONCLUSIONS

Temperature dependent elastic, anelastic, and electrical properties of A1N were characterized by micro-
mechanical and dielectric measurements. Intrinsic damping in aluminum nitride was below that needed to suppress

vibrations at temperatures below 1200 °C in vacuum. In addition, alternating stress and electrical fields induced

dipole reorientation of vacancy defects. The elastic modulus only decreased by 8 percent under the conditions of this

investigation (20 to 1200 °C), and hence aluminum nitride has potential of retaining stiffness and dimensional
tolerances at elevated temperatures.
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Figure 1 .---Secondary electron image of aluminum nitride sample with EDS results illustrating composition.
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